p-group, non-abelian, nilpotent (class 4), monomial, rational
Aliases: C42.14D4, 2+ 1+4.5C22, (C2×Q8).35D4, C22⋊C4.2D4, C42⋊3C4⋊7C2, C2.25C2≀C22, (C2×D4).6C23, C23.18(C2×D4), C23.7D4.C2, D4.9D4.2C2, (C22×C4).105D4, C23.D4⋊4C2, C23⋊C4.5C22, C22.49C22≀C2, C4.D4.5C22, C4.4D4.20C22, C22.57C24⋊2C2, C22.D4.6C22, (C2×C4).18(C2×D4), SmallGroup(128,933)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.14D4
G = < a,b,c,d | a4=b4=c4=d2=1, ab=ba, cac-1=a-1b, dad=a-1b-1, cbc-1=a2b-1, bd=db, dcd=b2c-1 >
Subgroups: 296 in 113 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, M4(2), SD16, Q16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C23⋊C4, C23⋊C4, C4.D4, C4≀C2, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C8.C22, 2+ 1+4, C23.D4, C42⋊3C4, D4.9D4, C23.7D4, C22.57C24, C42.14D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C2≀C22, C42.14D4
Character table of C42.14D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8 | |
size | 1 | 1 | 2 | 4 | 4 | 8 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ16 | 4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ17 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 31 26)(2 10 32 27)(3 11 29 28)(4 12 30 25)(5 16 17 24)(6 13 18 21)(7 14 19 22)(8 15 20 23)
(1 5 9 14)(2 13 25 18)(3 19 11 24)(4 23 27 8)(6 32 21 12)(7 28 16 29)(10 20 30 15)(17 26 22 31)
(2 25)(3 29)(4 10)(5 22)(6 18)(7 16)(11 28)(12 32)(13 21)(14 17)(19 24)(27 30)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,31,26)(2,10,32,27)(3,11,29,28)(4,12,30,25)(5,16,17,24)(6,13,18,21)(7,14,19,22)(8,15,20,23), (1,5,9,14)(2,13,25,18)(3,19,11,24)(4,23,27,8)(6,32,21,12)(7,28,16,29)(10,20,30,15)(17,26,22,31), (2,25)(3,29)(4,10)(5,22)(6,18)(7,16)(11,28)(12,32)(13,21)(14,17)(19,24)(27,30)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,31,26)(2,10,32,27)(3,11,29,28)(4,12,30,25)(5,16,17,24)(6,13,18,21)(7,14,19,22)(8,15,20,23), (1,5,9,14)(2,13,25,18)(3,19,11,24)(4,23,27,8)(6,32,21,12)(7,28,16,29)(10,20,30,15)(17,26,22,31), (2,25)(3,29)(4,10)(5,22)(6,18)(7,16)(11,28)(12,32)(13,21)(14,17)(19,24)(27,30) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,31,26),(2,10,32,27),(3,11,29,28),(4,12,30,25),(5,16,17,24),(6,13,18,21),(7,14,19,22),(8,15,20,23)], [(1,5,9,14),(2,13,25,18),(3,19,11,24),(4,23,27,8),(6,32,21,12),(7,28,16,29),(10,20,30,15),(17,26,22,31)], [(2,25),(3,29),(4,10),(5,22),(6,18),(7,16),(11,28),(12,32),(13,21),(14,17),(19,24),(27,30)]])
Matrix representation of C42.14D4 ►in GL8(𝔽17)
11 | 6 | 11 | 11 | 6 | 11 | 6 | 6 |
6 | 11 | 11 | 11 | 11 | 6 | 6 | 6 |
6 | 6 | 11 | 6 | 11 | 11 | 11 | 6 |
6 | 6 | 6 | 11 | 11 | 11 | 6 | 11 |
6 | 11 | 6 | 6 | 6 | 11 | 6 | 6 |
11 | 6 | 6 | 6 | 11 | 6 | 6 | 6 |
11 | 11 | 11 | 6 | 11 | 11 | 6 | 11 |
11 | 11 | 6 | 11 | 11 | 11 | 11 | 6 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
11 | 6 | 11 | 11 | 11 | 6 | 11 | 11 |
11 | 6 | 6 | 6 | 11 | 6 | 6 | 6 |
11 | 11 | 11 | 6 | 11 | 11 | 6 | 11 |
6 | 6 | 11 | 6 | 6 | 6 | 6 | 11 |
11 | 6 | 11 | 11 | 6 | 11 | 6 | 6 |
11 | 6 | 6 | 6 | 6 | 11 | 11 | 11 |
6 | 6 | 11 | 6 | 11 | 11 | 11 | 6 |
11 | 11 | 11 | 6 | 6 | 6 | 11 | 6 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [11,6,6,6,6,11,11,11,6,11,6,6,11,6,11,11,11,11,11,6,6,6,11,6,11,11,6,11,6,6,6,11,6,11,11,11,6,11,11,11,11,6,11,11,11,6,11,11,6,6,11,6,6,6,6,11,6,6,6,11,6,6,11,6],[0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[11,11,11,6,11,11,6,11,6,6,11,6,6,6,6,11,11,6,11,11,11,6,11,11,11,6,6,6,11,6,6,6,11,11,11,6,6,6,11,6,6,6,11,6,11,11,11,6,11,6,6,6,6,11,11,11,11,6,11,11,6,11,6,6],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1] >;
C42.14D4 in GAP, Magma, Sage, TeX
C_4^2._{14}D_4
% in TeX
G:=Group("C4^2.14D4");
// GroupNames label
G:=SmallGroup(128,933);
// by ID
G=gap.SmallGroup(128,933);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,456,422,723,352,297,1971,375,4037]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b,d*a*d=a^-1*b^-1,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d=b^2*c^-1>;
// generators/relations
Export